EconPapers    
Economics at your fingertips  
 

Probing inhomogeneity of electrical-thermal distribution on electrode during fast charging for lithium-ion batteries

Xinlei Gao, Yalun Li, Huizhi Wang, Xinhua Liu, Yu Wu, Shichun Yang, Zhengming Zhao and Minggao Ouyang

Applied Energy, 2023, vol. 336, issue C, No S0306261923002325

Abstract: With the emerging demands for precise control in next-generation battery managements systems (BMSs), more fundamental understanding of external characteristics for lithium-ion batteries (LIBs) is urgently required. The electrical-thermal distribution across electrode is closely coupled with cell configuration and operating conditions. Especially during fast charging, substantial temperature rise can lead to inhomogeneous in-plane thermal distribution with large thermal gradients, causing uneven local lithium (Li) plating on the anode surface, which highly undermines the safety of LIBs. In this study, aiming at probing the electrical-thermal inhomogeneity on electrode of pouch cells, distributed temperature measurements are conducted under various charge rates and ambient temperatures. A stacked layer model is established and further verified with measured anode potentials. Detailed temperature distribution inside the pouch cell and the temperature field evolution at different charge stages are thoroughly elucidated. Electrode current density distribution that results in thermal inhomogeneity is revealed, and three thermal distribution patterns coupled with various operating conditions are summarized. Then, the effects of different convection methods on electrical-thermal distribution are analysed, and enhanced convection is found to effectively reduce the thermal inhomogeneity but increase the risk for Li plating. Under uneven convection scenarios, Li plating preferably occurs on the colder region under fast charging. This study provides novel insights in electrical-thermal inhomogeneity inside LIBs, highly underpinning the smart control strategy development of next-generation BMSs.

Keywords: Electrical-thermal distribution; Electrode inhomogeneity; Lithium plating; Fast charging; Lithium-ion batteries (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261923002325
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:336:y:2023:i:c:s0306261923002325

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic

DOI: 10.1016/j.apenergy.2023.120868

Access Statistics for this article

Applied Energy is currently edited by J. Yan

More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:appene:v:336:y:2023:i:c:s0306261923002325