Digital twins for secure thermal energy storage in building
Zhihan Lv,
Chen Cheng and
Haibin Lv
Applied Energy, 2023, vol. 338, issue C, No S0306261923002714
Abstract:
The purpose of this work is to explore the role of the safe and optimal scheduling of thermal energy storage systems in intelligent buildings in promoting sustainable economic development under Digital Twins (DTs) technology. Phase Change Material (PCM) has high energy density, constant temperature storage, small footprint, and long service life. Here, PCM is first placed in the indoor building structure, and the DTs technology is introduced. In the development of intelligent buildings, the data generated by the energy storage system of intelligent buildings in the real space can be mapped to the virtual space in real time for simultaneous analysis. In addition, the PCM wall structure and thermal network DTs model are designed for the intelligent building. In addition, the PCW structure is used to build a thermal energy storage and dispatch model of the smart thermoelectric building based on DTs. Finally, the model is evaluated and analyzed experimentally. The analysis of system optimization power under different schemes indicates that the scheduling operation strategy of thermal energy storage of building walls can avoid overcharging or over-discharging batteries in the microgrid and reduce battery power consumption. Besides, the building wall energy storage capacity is always in the range of 0.2 ∼ 0.8 on the all-weather scale. Moreover, the model constructed here achieves significantly lower economic costs, environmental costs, and energy costs and a better energy-saving effect than the existing model. The model built here can serve as experimental reference for further digital energy storage in intelligent buildings and comprehensive energy utilization because of its superior safety performance and lower consumption.
Keywords: Thermal energy storage; Digital twins; Phase change material; Intelligent building; Microgrid (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261923002714
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:338:y:2023:i:c:s0306261923002714
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2023.120907
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().