Revealing the impact of renewable uncertainty on grid-assisted power-to-X: A data-driven reliability-based design optimization approach
Jeongdong Kim,
Meng Qi,
Jinwoo Park and
Il Moon
Applied Energy, 2023, vol. 339, issue C, No S0306261923003793
Abstract:
Designing a reliable power-to-X (PtX) process that uses renewable energy and grid electricity as backup power is challenging due to the uncertain nature of renewables and potential limits on grid usage. To address this challenge, this paper proposes a data-driven, reliability-based optimization approach for designing a grid-assisted PtX process and understanding how the uncertainty of time-series renewable profile affects its design and optimal sizing. This approach uses generative adversarial networks (GANs) to capture the complex patterns of renewables in temporal and spatial dimensions, rather than simply treating uncertainty as a probabilistic range as in conventional methods. The optimization considers both the mean and variance of production cost as objectives, while also taking into account the level of grid energy penetration as a probabilistic constraint through the reliability analysis. A power allocation and performance evaluation model is developed and used in conjunction with the optimization to assess uncertainty propagation through the PtX process and evaluate the impact of renewable uncertainty on process performance. A case study involving the production of methanol on Jeju Island in South Korea demonstrates how the mean and variance of production cost and other performance indicators can be balanced in the reliable design of PtX processes under renewable energy uncertainty, providing insights for decision-making in such situations.
Keywords: Power-to-X; Chemical energy storage; Data-driven approach; Renewable energy uncertainty; Renewable scenario generation; Reliability-based optimization (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261923003793
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:339:y:2023:i:c:s0306261923003793
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2023.121015
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().