Modeling of a hinged-raft wave energy converter via deep operator learning and wave tank experiments
Jincheng Zhang,
Xiaowei Zhao,
Deborah Greaves and
Siya Jin
Applied Energy, 2023, vol. 341, issue C, No S0306261923004361
Abstract:
Model identification for a hinged-raft wave energy converter (WEC) is investigated in this paper, based on wave tank experiments and deep operator learning. Different from previous works which all formulated this issue as a function approximation task, this work, for the first time, formulates it as an operator approximation task (which learns the mapping from a function space to another function space). As such, a continuous-time WEC model is identified from data, greatly expanding the horizon of data-based WEC modeling because previous works were limited to discrete-time model identification. The error accumulation for multi-step predictions in the discrete-time formulation is thus also addressed. The model is developed by first carrying out a set of wave tank experiments to generate the training data, and then the deep operator learning model, i.e. the DeepONet, is constructed and trained based on the experimental data. The validation study shows that the model captures the WEC dynamics accurately. A new set of experimental runs are further carried out and the results show that after training, the model can be used as a digital wave tank, an alternative to the expensive numerical and physical wave tanks, for accurate and real-time simulations of the WEC dynamics.
Keywords: Data-based modeling; Deep learning; DeepONet; Wave energy converter; Wave tank experiment (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261923004361
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:341:y:2023:i:c:s0306261923004361
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2023.121072
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().