Leveraging hybrid probabilistic multi-objective evolutionary algorithm for dynamic tariff design
Wenpeng Luan,
Longfei Tian and
Bochao Zhao
Applied Energy, 2023, vol. 342, issue C, No S0306261923004877
Abstract:
Dynamic tariffs play an important role in demand response, contributing to smoothing power consumption and reducing generation capacity requirement and carbon emission. However, in the existing works, tariffs are usually designed without comprehensive consideration, such as potential user responses to tariffs. Thus, assuming an electricity trading market contains a utility company and multiple residential users, a dynamic tariff design method is proposed in this paper, considering user responses to tariff changes. Leveraging the non-intrusive load monitoring technique, rated power and user preference features for each appliance are acquired by the utility company to quantify user comfort (discomfort) based on derived user appliance usage habits. Then, a bi-level Stackelberg game model is built on the supply side for designing optimal dynamic tariffs and imitating the influence of tariff changes on DR plans for users. The upper level represents the utility company, trying to maximize utility profit, social welfare and carbon emission reduction. While the lower level represents users, aiming to minimize electricity bills and user discomfort. By solving such an optimization problem with multiple objectives, a novel hybrid probabilistic multi-objective evolutionary algorithm balancing evolutionary efficiency and stability is applied where random forest is adopted to boost performance. The proposed model is benchmarked with two state-of-the-art pricing methods and validated on a publicly accessible REFIT dataset, where low-rate power measurements are collected from real houses in the UK. The experimental results show the proposed model generally outperforms benchmarks on dynamic tariff design in achieving peak-shaving and low carbon emission while preserving user satisfaction. Furthermore, a case study is implemented, which verifies the necessity of various objectives employed in the proposed method.
Keywords: Dynamic tariff design; Stackelberg game; Hybrid probabilistic multi-objective evolutionary algorithm; Demand response; Random forest (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261923004877
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:342:y:2023:i:c:s0306261923004877
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2023.121123
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().