EconPapers    
Economics at your fingertips  
 

Multi-Agent attention-based deep reinforcement learning for demand response in grid-responsive buildings

Jiahan Xie, Akshay Ajagekar and Fengqi You

Applied Energy, 2023, vol. 342, issue C, No S0306261923005263

Abstract: Integrating renewable energy resources and deploying energy management devices offer great opportunities to develop autonomous energy management systems in grid-responsive buildings. Demand response can promote enhancing demand flexibility and energy efficiency while reducing consumer costs. In this work, we propose a novel multi-agent deep reinforcement learning (MADRL) based approach with an agent assigned to individual buildings to facilitate demand response programs with diverse loads, including space heating/cooling and electrical equipment. Achieving real-time autonomous demand response in networks of buildings is challenging due to uncertain system parameters, the dynamic market price, and complex coupled operational constraints. To develop a scalable approach for automated demand response in networks of interconnected buildings, coordination between buildings is necessary to ensure demand flexibility and the grid's stability. We propose a MADRL technique that utilizes an actor-critic algorithm incorporating shared attention mechanism to enable effective and scalable real-time coordinated demand response in grid-responsive buildings. The presented case studies demonstrate the ability of the proposed approach to obtain decentralized cooperative policies for electricity costs minimization and efficient load shaping without knowledge of building energy systems. The viability of the proposed control approach is also demonstrated by a reduction of over 6% net load demand compared to standard reinforcement learning approaches, deep deterministic policy gradient, and soft actor-critic algorithm, as well as a tailored MADRL approach for demand response.

Keywords: Demand response; Deep reinforcement learning; Multi-agent; Buildings (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (6)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261923005263
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:342:y:2023:i:c:s0306261923005263

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic

DOI: 10.1016/j.apenergy.2023.121162

Access Statistics for this article

Applied Energy is currently edited by J. Yan

More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:appene:v:342:y:2023:i:c:s0306261923005263