Impact of customer portrait information superiority on competitive pricing of EV fast-charging stations
Yujie Sheng,
Hongtai Zeng,
Qinglai Guo,
Yang Yu and
Qiang Li
Applied Energy, 2023, vol. 348, issue C, No S0306261923007766
Abstract:
The rapid development of electric vehicles (EVs) has increased the demand for public fast-charging stations (FCSs). Multiple self-interested charging service operators (CSOs) in an urban transportation network compete with each other through pricing signals to maximize their respective profits, where the information about customer demands and heterogeneous preferences work as important decision criteria. With the prevailing data transaction, the information superiority differences between CSOs may significantly affect the competitive pattern in the charging market. In this study, a Nash-Stackelberg-Nash game framework is established to investigate the strategic pricing of CSOs under different information distribution scenarios. The customer response pattern, namely, the routing and charging choices of EV drivers to pricing signals, is described via a computationally efficient extended stochastic user equilibrium model comprehensively considering heterogeneous customer preferences and decision stochasticity. Then, aiming at different data forms, both parameter-driven and sample-driven CSO pricing models are proposed. The pricing models are reformulated as a tractable single-level mixed-integer linear program, and the game equilibrium is solved alternately via Gauss-Seidel iteration. Numerical simulations are conducted to analyze the impact of single CSO information superiority and double CSO information distribution on CSO profitability and customer experience in both data forms. The influences of endogenous factors like CSO data amount and processing ability, as well as exogenous scenario parameters like customer preference distribution and perception error distribution, are discussed.
Keywords: Electric vehicle; Charging service operators; Nash-Stackelberg-Nash game; Information superiority; Data openness (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261923007766
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:348:y:2023:i:c:s0306261923007766
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2023.121412
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().