Short-term forecasting model for residential indoor temperature in DHS based on sequence generative adversarial network
Jiancai Song,
Tianxiang Bian,
Guixiang Xue,
Hanyu Wang,
Xingliang Shen and
Xiangdong Wu
Applied Energy, 2023, vol. 348, issue C, No S0306261923009236
Abstract:
With the rapid development of the economy and the continuous improvement of people's living conditions, building thermal comfort has become one of the essential objectives of the development of the smart district heating system (SDHS). The accurate prediction approach of indoor temperature is the primary prerequisite and basis for achieving optimal thermal comfort regulation. However, the buildings' indoor temperature has significant thermal inertia and nonlinear characteristics due to the influence of multiple factors. The traditional time-series prediction algorithm can hardly accurately extract the indoor temperature variation pattern and cannot fully meet the satisfactory regulation requirements of SDHS. Therefore, an indoor temperature prediction model based on a sequence generative adversarial network (SGAN) is proposed in this paper. The new SGAN algorithm is trained by iterative adversarial training of the generator and discriminator, and the LSTM model built into the generator can effectively extract the high-level nonlinear abstract features of indoor temperature to achieve its accurate prediction. The detailed comparative experimental results show that the proposed indoor forecasting algorithm based on SGAN has obvious performance advantages compared to state-of-the-art algorithms, such as random forest regression (RFR), gradient boosting regression (GBR), support vector regression (SVR), adaptive boost (AdaBoost), multilayer perception (MLP), and long-short term memory(LSTM). The SGAN's mean absolute percentage error (MAPE) index reaches 2.3%.
Keywords: Indoor temperature prediction; Forecasting algorithm; Generative adversarial network; District heating system (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261923009236
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:348:y:2023:i:c:s0306261923009236
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2023.121559
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().