EconPapers    
Economics at your fingertips  
 

Building cooling load forecasting of IES considering spatiotemporal coupling based on hybrid deep learning model

Min Yu, Dongxiao Niu, Jinqiu Zhao, Mingyu Li, Lijie Sun and Xiaoyu Yu

Applied Energy, 2023, vol. 349, issue C, No S030626192300911X

Abstract: Accurate short-term forecasting of building cooling load (CLF) in an integrated energy system (IES) is essential for effective building energy management. However, the existing CLF models for IES often treat each building as an independent entity and neglect the spatiotemporal correlation among buildings. To address this research gap and achieve accurate CLF, this paper proposes a new hybrid deep learning model that considers spatiotemporal coupling. First, the coupled spatial–temporal features among different buildings were analyzed, and the meteorological factors were screened based on the Spearman's rank order correlation coefficient (SROCC). Second, synchrosqueezing wavelet denoising (SWT) was adopted to denoise the historical cooling load (CL) data, remove high-frequency noise, and improve data quality. Third, the TTGAT-GTC model was constructed for the CLF of an IES. A temporal trend-aware graph attention network (TTGAT) captured the spatial correlation of CL between buildings. A gated temporal convolution layer (GTC) was constructed to extract the trend in the dynamic temporal variation in historical load. Residual and skip connections were applied to avoid gradient disappearance and increase the computational efficiency of the model. To validate the effectiveness of the proposed SWT-TTGAT-GTC model, this paper compared the proposed model with four benchmark models using MAPE, RMSE, MAE, and R2. The experimental results showed that the performance of the proposed CL forecasting model is superior and that the proposed model appropriately introduces the spatio-temporal coupling information between buildings.

Keywords: Cooling load forecasting; Spatio-temporal coupling; Temporal trend-aware graph attention network; Gate temporal convolutional layer (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (7)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S030626192300911X
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:349:y:2023:i:c:s030626192300911x

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic

DOI: 10.1016/j.apenergy.2023.121547

Access Statistics for this article

Applied Energy is currently edited by J. Yan

More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:appene:v:349:y:2023:i:c:s030626192300911x