Multi-objective optimization of WAG injection using machine learning and data-driven Proxy models
Alassane Oumar Bocoum and
Mohammad Reza Rasaei
Applied Energy, 2023, vol. 349, issue C, No S0306261923009571
Abstract:
In complex optimization processes such as CO2-water alternating gas (CO2-WAG), several iterative steps are needed before finding an optimal or sub-optimal set of solutions. This leads to time-consuming operations, especially when the simulation is run with a compositional simulator. Proxy models have been used to tackle this issue as they can replicate efficiently and accurately reservoir simulators in specific studies. However, the construction of such a proxy model, its basic database in particular, differs according to the designer and the objective function(s).
Keywords: CO2-water alternating gas; ANN; NSGA-II; Multi-objective optimization; Cumulative oil recovery; Net Present Value (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261923009571
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:349:y:2023:i:c:s0306261923009571
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2023.121593
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().