A reconfiguration method for photovoltaic array of stratospheric airship based on multilevel optimization algorithm
Chuan Shan,
Kangwen Sun,
Xinzhe Ji and
Dongji Cheng
Applied Energy, 2023, vol. 352, issue C, No S030626192301245X
Abstract:
Reducing the mismatch loss to increase the output power of the photovoltaic (PV) array is crucial for extending the flight time of stratospheric airships. This paper presents a reconfiguration system for PV arrays based on a switch matrix designed for stratospheric airships. The proposed system employs a multilevel optimization reconfiguration algorithm that combines smart choice, greedy, and Munkres' assignment algorithms. Simulations were conducted under single working conditions, full-day sunlight cycles, and full-year PV array reconfigurations, respectively. The results demonstrated that the reconfigured PV array significantly improved the output power with a smooth PV curve. The instantaneous power under extreme working conditions could be increased by 50.1%. Furthermore, during the 7-day simulation process, the average daily power output of the PV array increased by 14.68%, whereas the output fluctuation during circular cruising was reduced. The reconfiguration system offers greater advantages during months with weak irradiance in high-latitude regions, where the daily output power of the PV array can be increased by up to 24.46%. This significantly reduces the installation area and weight ratio of a stratospheric airship PV array.
Keywords: Photovoltaic array; Stratospheric airship; Reconfiguration; Optimization algorithm; Mismatch loss; Energy improvement (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S030626192301245X
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:352:y:2023:i:c:s030626192301245x
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2023.121881
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().