Power transition cycles of reversible solid oxide cells and its impacts on microgrids
Hector del Pozo Gonzalez,
Lucile Bernadet,
Marc Torrell,
Fernando D. Bianchi,
Albert Tarancón,
Oriol Gomis-Bellmunt and
Jose Luis Dominguez-Garcia
Applied Energy, 2023, vol. 352, issue C, No S0306261923012515
Abstract:
Currently, reversible solid oxide cells (rSOC) are the only devices that allows a bidirectional conversion of H2O and H2, being able to operate as fuel cell and as electrolyzer. Thanks to the high-temperature operation, rSOC present a higher efficiency and additionally, provide a feasible solution for long-term energy storage in electrical systems. Experimental testing of rSOC have been mainly focused on cells characterization, thermal or degradation analysis, but the study of transition cycles has not been widely studied. The transitions between the operation as a solid oxide fuel cell (SOFC) and as a solid oxide electrolysis cell (SOEC) might have a significant impact on the rest of the electrical system in which the rSOC is integrated. This article analyzes experimentally the power responses of a rSOC stack, during each operating mode (SOEC-SOFC) and during transition between both modes. The results suggest that transition cycles can be achieved in less than 8 min and the total transition from SOEC rated power to SOFC rated power in less than 10 min, having a significant impact on microgrid operations, especially in islanded mode. The obtained results indicate that the most suitable role for rSOC in a microgrid is as grid-following. The grid-forming role is only possible if the rSOC operates along with a fast-response power source.
Keywords: Reversible solid oxide cells; Transition cycles; Microgrids; Hydrogen; Solid oxide fuel cell; Solid oxide electrolysis (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261923012515
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:352:y:2023:i:c:s0306261923012515
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2023.121887
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().