Investigation of output performance and temperature distribution uniformity of PEMFC based on Pt loading gradient design
Pengnan Wei,
Guofeng Chang,
Ruijia Fan,
Yiming Xu and
Siqi Chen
Applied Energy, 2023, vol. 352, issue C, No S0306261923013260
Abstract:
Temperature distribution uniformity within the cathode catalyst layer (CCL) and power density are two crucial parameters to characterize the durability and output performance of proton exchange membrane fuel cells (PEMFCs), which are affected by the Pt distribution within the CCL. Therefore, the temperature distribution uniformity within the CCL and the output performance at different operating voltages for a PEMFC with various Pt loading gradient distributions along the in-plane (IP) direction are investigated in this paper. Moreover, a two-dimensional, two-phase, non-isothermal model is developed, and the concepts of high power density range (HPDR) and temperature uniformity index (TUI) are defined in this study. The results indicate that gradient Pt distribution has the opposite effect on output performance and temperature distribution uniformity at low and medium operating voltages; the improvement of one indicator means the deterioration of another. Besides, the optimal output performance is obtained with the uniform Pt distribution at high operating voltages, while the ideal temperature distribution uniformity is achieved by loading more Pt under the channel. Consequently, the output performance and temperature distribution uniformity must be traded off to obtain optimal comprehensive performance of PEMFC at different operating voltages when designing the Pt loading gradient distribution.
Keywords: PEMFC; Pt loading gradient distribution; Output performance; Temperature distribution uniformity (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (5)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261923013260
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:352:y:2023:i:c:s0306261923013260
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2023.121962
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().