New member of micro power sources for extreme environmental explorations: X-ray-voltaic batteries
Yingying Zhao,
Chen Zhao,
Haibin Li,
Jiwei Ren,
Shuxing Zhou and
Yiying Zhao
Applied Energy, 2024, vol. 353, issue PB, No S0306261923014678
Abstract:
It has been a long-term challenge for radiation-voltaics to meet the power requirements of the fast-developed exploration activities in extreme environments such as deep sea, polar regions, and outer space. In this work, we demonstrated novel X-ray radiation-voltaic (X-ray-voltaic) batteries adopting SiC conversion units, which could improve the output power up to 3 orders of magnitude higher than that of state-of-the-art betavoltaics. A comprehensive model integrating the radioactive sources and semiconductor units was built to guide the design of X-ray voltaics. SiC devices with the optimal structure were fabricated and confirmed experimentally the accuracy of the device model. According to the model, the SiC X-ray-voltaics with 55Fe radioactive sources can achieve a highest output power of 19.10 μW/cm2 and a highest power efficiency (ηtotal) of 7.71%. The unique advantages of SiC X-ray-voltaic batteries including the excellent irradiation hardness, the superlong lifetime, and the outstanding prospects as power sources were discussed in details. This work reveals the promising potentials of the X-ray-voltaics for extreme environmental explorations and will inspire the further development of the high-performance isotope batteries.
Keywords: X-ray-voltaic battery; SiC energy conversion unit; High output power; Energy conversion efficiency (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261923014678
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:353:y:2024:i:pb:s0306261923014678
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2023.122103
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().