EconPapers    
Economics at your fingertips  
 

Response surface methodology and artificial neural network-genetic algorithm for modeling and optimization of bioenergy production from biochar-improved anaerobic digestion

Yuanhang Zhan and Jun Zhu

Applied Energy, 2024, vol. 355, issue C, No S0306261923017002

Abstract: Biochar can be used to improve the anaerobic digestion (AD) of agricultural wastes for higher methane production. However, the interaction of biochar addition with other factors of the anaerobic co-digestion (Co-AD) process has rarely been investigated. In this study, process models based on response surface methodology (RSM) and artificial neural network (ANN) were compared in modeling the methane yield (MY, mL CH4/g VS added) from the Co-AD of poultry litter and wheat straw with biochar addition. Box-Behnken design was applied, with the controlling parameters being carbon to nitrogen ratio (C/N), total solids (TS, %), and biochar addition (Biochar, % TS). Numerical optimization and genetic algorithm (GA) were used as optimization tools for RSM and ANN, respectively. A significant second-order quadratic model was built by RSM (R2 = 0.9981 and RMSE = 0.91), which demonstrated significant interactions between C/N and TS (p < 0.0001), and between C/N and Biochar (p < 0.05). The trained ANN (3−3−1) was less accurate (R2 = 0.9926, RMSE = 1.80) compared to RSM. The optimization results by RSM and ANN coupled with GA (ANN-GA) were both validated with prediction errors <0.5%. The optimization results by ANN-GA should be used since it generated a higher maximum MY of 290.7 ± 0.2 mL CH4/g VS added, under the optimal conditions of C/N ratio 24.46, TS 5.03%, and Biochar 8.73% TS, showing an improvement of 20.6% (compared to the control) through process optimization. The methods can also be applied in other scenarios for process modeling and optimization. The optimized results could support real applications of using additives including biochar, active carbon, nanoparticles, etc., to promote the bioenergy production from AD of agricultural wastes.

Keywords: Biochar addition; Carbon-to‑nitrogen ratio; Total solids; Box-Behnken design; Methane yield; Optimal conditions (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261923017002
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:355:y:2024:i:c:s0306261923017002

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic

DOI: 10.1016/j.apenergy.2023.122336

Access Statistics for this article

Applied Energy is currently edited by J. Yan

More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:appene:v:355:y:2024:i:c:s0306261923017002