EconPapers    
Economics at your fingertips  
 

Leveraging machine learning to forecast carbon returns: Factors from energy markets

Yingying Xu, Yifan Dai, Lingling Guo and Jingjing Chen

Applied Energy, 2024, vol. 357, issue C, No S0306261923018792

Abstract: Carbon market is the most effective market tool for carbon emission reduction. China, the largest carbon emitter in the world, established the national carbon market in 2021, covering over 2000 key units in the power sector. Therefore, the forecasting of carbon price has profound implications for environmental and energy policies. In this paper, two traditional econometric model and three kinds of machine learning (ML) algorithms are used to predict carbon returns in the Chinese carbon trading market based on carefully selected predictors. Among all forecasting models, the Random Forest (RF) has the best forecasting performance, followed by some GARCH models using various factors. Compared with the traditional benchmark of ARMA model, the BP neural network (BP) and the GA improved BP method (GA-BP) are less competitive in predicting carbon returns in China because of their large forecasting errors. According to the optimal model, social attention to the carbon market, the international crude oil returns and the overall performance of the stock market are the most important predictors. The findings are robust to the change in the sample set. Overall, the ML approach shows an advantage in forecasting carbon returns, but the selection of predictors is also important.

Keywords: Carbon price; Machine learning; Forecast; Random forest; Carbon market (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261923018792
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:357:y:2024:i:c:s0306261923018792

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic

DOI: 10.1016/j.apenergy.2023.122515

Access Statistics for this article

Applied Energy is currently edited by J. Yan

More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:appene:v:357:y:2024:i:c:s0306261923018792