EconPapers    
Economics at your fingertips  
 

Improving operating policies in stochastic optimization: An application to the medium-term hydrothermal scheduling problem

Jesús D. Gómez-Pérez, Jesus M. Latorre-Canteli, Andres Ramos, Alejandro Perea, Pablo Sanz and Francisco Hernández

Applied Energy, 2024, vol. 359, issue C, No S0306261924000710

Abstract: In decision-making under uncertainty, a robust representation of uncertainty is vital for optimal operational and strategic solutions. We extend existing methods by utilizing Fourier decomposition to create multivariate synthetic time series, capturing stochastic seasonal patterns while preserving correlations. These synthetic time series are transformed into a recombining scenario tree via K-means clustering. To enhance the resulting policy in the Stochastic Dual Dynamic Programming (SDDP) framework, we propose an additional sampling within scenario-tree nodes to consider a better representation of the cost-to-go function. A convergence proof for this sampling technique is provided. Moreover, two new stopping criteria are introduced for better solution accuracy and robustness. The first criterion extends traditional stopping rules to all scenario-tree nodes. The second criterion enforces a minimum count of Benders cuts per node, promoting accurate and robust solutions. Our approach is evaluated on the Spanish hydrothermal system, incorporating synthetic time series with seasonal-trend uncertainty in optimization and simulation. Policies from traditional SDDP and our technique were tested over a thousand realizations, demonstrating that our proposals yield reservoir operation policies closer to the thresholds set by the operator compared to traditional SDDP. Computational efficiency is maintained. The proposed sampling mitigates the impact of discretizing stochastic variables into scenario trees by evaluating more scenarios per node. Our framework offers robust policies under uncertainty through stochastic seasonal patterns by Fourier analysis, novel SDDP sampling, and additional stopping criteria.

Keywords: Time series; Fourier analysis; Optimization methods; Stochastic programming; SDDP; Sampling methods (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261924000710
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:359:y:2024:i:c:s0306261924000710

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic

DOI: 10.1016/j.apenergy.2024.122688

Access Statistics for this article

Applied Energy is currently edited by J. Yan

More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:appene:v:359:y:2024:i:c:s0306261924000710