Improving probabilistic wind speed forecasting using M-Rice distribution and spatial data integration
Roberta Baggio and
Jean-François Muzy
Applied Energy, 2024, vol. 360, issue C, No S030626192400223X
Abstract:
We consider the problem of short-term forecasting of surface wind speed probability distribution. Our approach simply consists in predicting the parameters of a given probability density function by training a neural network model whose loss function is chosen as the log-likelihood provided by this distribution. We compare different possibilities among a set of distributions that have been previously considered in the context of modeling wind fluctuations. Our results rely on two different hourly wind speed datasets: the first one has been recorded by Météo-France in Corsica (South France), a very mountainous Mediterranean island while the other one relies on KNMI database that provides records of various stations over The Netherlands, a very flat country in Northwestern Europe. A first part of our work globally unveils the superiority of the so-called ”Multifractal Rice” (M-Rice) distribution over alternative parametric models, showcasing its potential as a reliable tool for wind speed forecasting. This family of distributions has been proposed in the context of modeling wind speed fluctuations as a random cascade model along the same picture as fully developed turbulence. For all stations in both regions, it consistently provides better results regardless of the considered probabilistic scoring rule or forecasting horizon. Our second findings demonstrate significant enhancements in forecasting accuracy when one incorporates wind speed data from proximate weather stations, in full agreement with the results obtained formerly for point-wise wind speed prediction. Moreover, we reveal that the incorporation of ERA5 reanalysis of 10 m wind data from neighboring grid points contributes to a substantial improvement at time horizon h=6 hours while at a shorter time horizon (h=1 h) it does not lead to any noticeable improvement. It turns out that accounting for pertinent features and explanatory factors, notably those related the spatial distribution and wind speed and direction, emerges as a more critical factor in enhancing accuracy than the choice of the ”optimal” parametric distribution. We also find out that accounting for more explanatory factors mainly increases the resolution performances while it does not change the reliability contribution to the prediction performance metric considered (CRPS).
Keywords: Surface wind speed; Wind power; Deep learning models; Probabilistic forecasting; Short-term forecasting; Spatio-temporal correlations (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S030626192400223X
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:360:y:2024:i:c:s030626192400223x
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2024.122840
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().