Power generation assessment of photovoltaic noise barriers across 52 major Chinese cities
Kai Zhang,
Dajiang Wang,
Min Chen,
Rui Zhu,
Fan Zhang,
Teng Zhong,
Zhen Qian,
Yazhou Wang,
Hengyue Li,
Yijie Wang,
Guonian Lü and
Jinyue Yan
Applied Energy, 2024, vol. 361, issue C, No S0306261924002228
Abstract:
Photovoltaic noise barriers (PVNBs) have the potential to contribute to sustainable urban development by increasing the supply of renewable energy to cities while decreasing traffic noise pollution. However, estimating the power generation of PVNBs at the city or national scale remains a challenge due to the complexities of the urban environment and the difficulties associated with collecting data on road noise barriers (RNBs) and radiation. This study used RNBs, 2.5-dimensional (2.5D) buildings, and hourly time resolution radiation data, to estimate the power generation of PVNBs in 52 of China's major cities. First, hourly building shadows were estimated for each day of the year, covering the period from sunrise to sunset, to identify areas of RNB that are shaded at any given time. Second, hourly clear-sky radiation data were collected and corrected using a radiation correction model to simulate real weather radiation. Finally, utilizing an inclined surface radiation estimation model, the photovoltaic (PV) potential both inside and outside RNBs affected by building shadows was assessed. Subsequently, the power generation of PVNB was estimated based on parameters of mainstream PV systems in the market. The results show that the RNB mileage in 52 selected cities represents 87.7% of China's total RNB mileage. Building shadows often result in a radiation loss of approximately 30% for RNBs reception. The installed capacity and annual power generation of PVNBs in all investigated cities are 2.04 GW and 690.74 GWh, respectively. This study estimates the comprehensive PV potential of potentially exploitable PVNBs in China, offering essential scientific insights to inform and facilitate the strategic development of PVNB projects at both the national and municipal levels.
Keywords: Road noise barriers; Photovoltaic; Building shadows; Sustainable cities (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261924002228
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:361:y:2024:i:c:s0306261924002228
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2024.122839
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().