Novel SOFC system concept with anode off-gas dual recirculation: A pathway to zero carbon emission and high energy efficiency
Jingyi Wang,
Jing Hua,
Zehua Pan,
Xinhai Xu,
Deming Zhang,
Zhenjun Jiao and
Zheng Zhong
Applied Energy, 2024, vol. 361, issue C, No S0306261924002459
Abstract:
In recent years, the potential of Solid oxide fuel cell (SOFC) technologies as energy conversion devices with high efficiency and zero‑carbon emissions has been underestimated, where high fuel utilization plays a crucial role. Although the SOFC system with anode off-gas single recirculation has received much attention as a means to increase fuel utilization, this problem is not thoroughly addressed. To overcome this limitation, this paper proposes a novel SOFC system concept featuring anode off-gas “dual” recirculation, designed to maximize fuel utilization up to the theoretical limit of 100%. This innovative approach inherently eliminates carbon dioxide emissions through an integrated carbon capture process, thereby maintaining systematic carbon balance. A comparative analysis among the novel dual recirculation system, traditional single-pass, and other anode off-gas recirculation systems, reveals that the proposed system outperforms existing configurations. It achieves electrical and overall combined heat and power efficiencies of 49.6% and 85.7%, respectively, even after accounting for the energy required for carbon capture. This represents a 21.5% increase in electric efficiency over the single recirculation system, with a six-fold increase in tail-gas CO2 concentration, reaching 26.3%. The study categorizes the four analyzed systems into “open” or “closed” based on whether the anode off-gas is directly discharged into the environment. Systematic investigations into carbon deposition potential, fuel utilization, flow rate, operating voltage, carbon capture ratio, and condensation temperature disclose distinct patterns between open and closed systems. The closed configurations exhibit superior performance, suggesting they are more suitable for SOFC applications.
Keywords: Solid oxide fuel cells CHP system; Fuel utilization; Anode off-gas dual recirculation; Open / closed system; Zero carbon emission; Comparative study (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261924002459
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:361:y:2024:i:c:s0306261924002459
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2024.122862
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().