Bid filtering for congestion management in European balancing markets – A reinforcement learning approach
Marie Girod,
Benjamin Donnot,
Virginie Dussartre,
Viktor Terrier,
Jean-Yves Bourmaud and
Yannick Perez ()
Applied Energy, 2024, vol. 361, issue C, No S0306261924002757
Abstract:
Innovations for near real-time common European balancing markets are underway to meet the flexibility needs induced by the deployment of renewables and new market agents. Never have markets and real-time network operations been run so closely on a continental scale. Our paper investigates a filtering method for integrating congestion management and near real-time markets. Reinforcement Learning is applied to add the cost of physical delivery to bid prices to advantage/disadvantage bids that reduce/create congestion. We assess the impact of this new method on market welfare and congestion management costs and show that it brings significant efficiency gains compared to no filtering or a baseline filtering methodology.
Keywords: Balancing markets; Congestion management; Filtering; European integration; Reinforcement learning (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261924002757
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:361:y:2024:i:c:s0306261924002757
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2024.122892
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().