Small demonstrator of a thermoelectric heat-pump booster for an ultra-low-temperature district-heating substation
Urban Tomc,
Simon Nosan,
Boris Vidrih,
Simon Bogić,
Kristina Navickaite,
Katja Vozel,
Miha Bobič and
Andrej Kitanovski
Applied Energy, 2024, vol. 361, issue C, No S0306261924002824
Abstract:
Heating and cooling systems account for approximately 50% of global energy consumption and contribute 40% of carbon dioxide emissions. District-heating systems offer enhanced energy efficiency, diversification, independence from energy sources, and the utilization of waste and renewable energy sources. One key energy-efficiency measure in district heating is reducing the supply and return temperatures. Fourth-generation district-heating systems operate with supply temperatures of 50 to 60 °C, enabling better utilization of renewable and waste heat. Fifth-generation district-heating systems further lower the supply/return temperatures, requiring additional heat sources, such as boosters, to heat domestic hot water. Heat pumps, specifically vapour-compression heat pumps, are the most energy-efficient devices for converting fuels or electricity into heat for space and water heating. However, vapour-compression technology faces challenges related to environmentally friendly refrigerants, noise, vibration, compactness, and energy efficiency, especially for small units. In this study, we introduce a novel design of thermoelectric-based heat-pump booster. Despite its lower exergy efficiency, this technology offers advantages such as compactness, silent operation without vibration, easy power control, and longevity. We demonstrate that these thermoelectric heat-pump boosters can increase the supply-water temperature of district-heating systems from around 32 °C to 42 °C, with a heating coefficient of performance equal to 2.4 and an exergy efficiency of 9.9%.
Keywords: District heating; Thermoelectrics; Heat pump; Booster; Energy efficiency (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261924002824
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:361:y:2024:i:c:s0306261924002824
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2024.122899
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().