Optimal battery based electrical reconfiguration technique for partial shaded PV system
Aravind P,
Prince Winston D,
Sugumar S and
Pravin M
Applied Energy, 2024, vol. 361, issue C, No S0306261924003258
Abstract:
In tackling the challenges associated with partial shading scenarios in solar photovoltaic (PV) arrays, this study introduces a groundbreaking approach to dynamic reconfiguration: the Optimal Battery-based Electrical Reconfiguration (OBER). Unlike conventional methods like the Couple Matching (CM) algorithm, OBER directly addresses the impact of shading on PV performance. By strategically connecting the strongest and weakest rows of both genders, OBER aims to overcome performance disparities induced by shading. A key innovation in OBER is the use of an external battery to augment energy in the weakest row, resulting in a substantial increase in array current and overall power output. Using MATLAB simulation, this study compares OBER with traditional methods like the New Column Index Method (NCIM), Square Dynamic Reconfiguration (SDR), and CM across ten partial shading scenarios. The proposed OBER outperforms TCT, NCIM, SDR, and CM in Pmax generation by 8.3% to 46.5%. OBER proves to be a transformative approach, promising efficiency enhancements and positioning itself as a key advancement in dynamically responsive solar PV systems. The experimental validation of OBER's performance reinforces its potential to significantly increase power output, providing a promising solution for optimizing solar PV arrays under challenging shading conditions.
Keywords: Electrical reconfiguration; Solar PV; Partial shading; Current injection; Dynamic reconfiguration (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261924003258
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:361:y:2024:i:c:s0306261924003258
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2024.122942
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().