EconPapers    
Economics at your fingertips  
 

The local lithium plating caused by anode crack defect in Li-ion battery

Yuebo Yuan, Hewu Wang, Xuebing Han, Yue Pan, Yukun Sun, Xiangdong Kong, Languang Lu and Minggao Ouyang

Applied Energy, 2024, vol. 361, issue C, No S0306261924003519

Abstract: Anode cracks are typical defects in Li-ion batteries, which lead to local lithium plating in the defect region. To avoid lithium plating, it is necessary to study the evolution mechanism, lithium plating condition, parameter sensitivity, and safety boundaries of defects. In this study, an artificial defect was implanted on the anode surface, and the appearance characteristic of dead lithium was observed. Based on finite element simulations, it was confirmed that potential heterogeneity is the core factor for lithium plating and that dead lithium can fill the defect region. The slope of the cathode equilibrium potential had the most significant influence on the lithium plating. The safety boundaries of the defect sizes for different cathode materials were determined. Moreover, based on simulations and experimental verification, the lithium iron phosphate battery working on the potential plateau was found to be capable of tolerating defects, thus providing a novel approach for improving battery safety.

Keywords: Li-ion battery; Anode crack defect; Lithium plating; Potential heterogeneity (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261924003519
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:361:y:2024:i:c:s0306261924003519

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic

DOI: 10.1016/j.apenergy.2024.122968

Access Statistics for this article

Applied Energy is currently edited by J. Yan

More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:appene:v:361:y:2024:i:c:s0306261924003519