EconPapers    
Economics at your fingertips  
 

Levelized cost of driving for medium and heavy-duty battery electric trucks

Mehdi Jahangir Samet, Heikki Liimatainen, Mikko Pihlatie and Oscar Patrick René van Vliet

Applied Energy, 2024, vol. 361, issue C, No S0306261924003593

Abstract: The total cost of ownership (TCO) of trucks is known as one of the main decision-making factors by logistics operators for adopting alternative powertrains such as battery electric trucks (BETs). In this study, we develop a very detailed levelized cost of driving (LCOD) model to analyse the TCO of BETs and conventional trucks (CTs) in medium and heavy-duty truck weight classes. The model has methodological advancements such as developing opportunity costs for charging activities, using a detailed operational time calculation, and analysing the optimum driving ranges or battery sizing. By implementing an extensive sensitivity analysis of LCOD for CTs and BETs over 43 variables, it is revealed that the key parameters such as operational driving range, battery pack price, state of charge of battery, driver cost, “mid-shift” charging power, ambient temperature, opportunity charging, and driving speed have major impacts on the cost competitiveness of BETs vs. CTs. In addition, the impact of battery and charging technology improvements as well as designing optimum driving ranges are examined in three different operational trip profiles (urban, short-haul or regional, long-haul). The result shows that: 1) BETs in urban trip profiles with the current and/or short-term battery technology might be economically viable alternatives for CTs without the help of the policy measures, 2) BETs with below 40 t gross vehicle weight and the long-term improvements in battery technology in all the operational trip profiles might be economically viable alternatives for CTs without the help of the policy measures, and 3) the implementation of policy measures affecting the relative costs of CTs and BETs and development of fast-charging facilities would be needed to support the above 40 t BETs in short-haul and long-haul trips for the current and/or short-term as well as mid-term battery technologies.

Keywords: Total cost of ownership (TCO); Battery electric trucks (BETs); Levelized cost of driving (LCOD); Operational driving range; Battery technology; Charging technology (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261924003593
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:361:y:2024:i:c:s0306261924003593

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic

DOI: 10.1016/j.apenergy.2024.122976

Access Statistics for this article

Applied Energy is currently edited by J. Yan

More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:appene:v:361:y:2024:i:c:s0306261924003593