Incorporating local uncertainty management into distribution system planning: An adaptive robust optimization approach
Junpeng Zhu,
Yong Huang,
Shuai Lu,
Mengya Shen and
Yue Yuan
Applied Energy, 2024, vol. 363, issue C, No S0306261924004860
Abstract:
As the penetration of renewable energy sources (RES) significantly increases, their inherent uncertainty has brought about a paradigm shift in distribution system planning and operation. The existing planning methodologies usually consider the uncertainty during the investment and day-ahead stages while neglecting the interactive power fluctuations during the intraday stage, resulting in planning schemes with a risk of inadequate regional stability. In light of this, this paper proposes a novel adaptive robust distribution system planning approach that integrates local uncertainty management (LUM) to provide a comprehensive and refined consideration of uncertainty. First, we introduce the concept of LUM that can effectively address the deviations between predicted and actual power of RES and load. Second, we propose the adaptive robust planning model for the distribution system, in which the investment and day-ahead operation are considered in the first stage, while LUM is considered in the second stage to maintain the local stability of interactive power. The proposed model can actively manage uncertainties of RES and load demand, reaching the optimal balance between the investment cost, operational cost, and LUM cost. Finally, by employing the column-and-constraint generation (C&CG), the adaptive robust planning model is decoupled into a master min problem and a slaver max-min problem, after which the max-min problem is converted into a single mixed-integer linear programming (MILP) problem through the strong duality theory and big-M method. The effectiveness of the proposed model is demonstrated using a real-world distribution system located in Fujian Province, China. The simulation results indicate that the proposed model achieves a quantitative decrease of approximately 10% in total cost compared to deterministic planning. Sensitivity analysis is also conducted to reveal the trade-off between economic cost and robustness level.
Keywords: Distribution system planning; Local uncertainty management; Renewable energy; Robust optimization (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261924004860
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:363:y:2024:i:c:s0306261924004860
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2024.123103
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().