Binary multi-frequency signal for accurate and rapid electrochemical impedance spectroscopy acquisition in lithium-ion batteries
Xutao Liu,
Shengyu Tao,
Shiyi Fu,
Ruifei Ma,
Tingwei Cao,
Hongtao Fan,
Junxiong Zuo,
Xuan Zhang,
Yu Wang and
Yaojie Sun
Applied Energy, 2024, vol. 364, issue C, No S0306261924006044
Abstract:
Electrochemical Impedance Spectroscopy (EIS) plays a crucial role in characterizing the internal electrochemical states of lithium-ion batteries and proves to be effective for estimating battery states. Traditional EIS measurement, however, requires expensive electrochemical workstations with time-consuming signal injection, especially in low-frequency regions, thus limiting its practical applications. Here we show that applying our proposed pulse-like Binary Multi-Frequency Signals (BMFS) as the excitation signal in the EIS measurement, which simultaneously possesses numerous frequency components and maintains high energy at each frequency component, will significantly improve test speed while retaining accuracy. The applicability of the BMFS under various cathode material types, including nickel cobalt manganese (NCM), lithium cobalt oxide (LCO), and lithium iron phosphate (LFP) is demonstrated. The robustness of the signal is experimentally verified through varying C-rates and measurement window lengths. The BMFS, requiring only 30 s per test, can achieve test results with an amplitude error of 1% and a phase error of 1° as compared with those obtained from traditional EIS tests. Moreover, BMFS can also be applied in online EIS measurement scenarios, favorable for real-world applications. This work enables accurate and rapid acquisition of EIS results, which is currently expensive and time-consuming to obtain, ensuring a faster and more nuanced characterization of the internal states of many battery systems in an affordable and accessible manner, especially in data-driven and machine-learning approaches.
Keywords: Electrochemical impedance spectroscopy (EIS); Battery impedance; Multi-frequency excitation; Battery measurement; Lithium-ion batteries (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261924006044
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:364:y:2024:i:c:s0306261924006044
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2024.123221
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().