PV Identifier: Extraction of small-scale distributed photovoltaics in complex environments from high spatial resolution remote sensing images
Ning Lu,
Liang Li and
Jun Qin
Applied Energy, 2024, vol. 365, issue C, No S0306261924006949
Abstract:
The precise location and size of distributed photovoltaics (PVs) is critical to infer the actual installed capacity and assess the remaining PV generation potential, and is therefore the cornerstone of strategic planning for distributed PV deployment. However, identifying small-scale distributed PVs in complex contexts from high spatial resolution remote sensing (HSRRS) images to obtain their information remains an issue. In this study, we propose an advanced deep learning model, called PV Identifier, to enhance the identification accuracy of small-scale PV systems from HSRRS images. PV Identifier uses a fine-grained feature layer (FFL) compatible with the size of PVs to improve the detection capability of the small-scale distributed PVs. At the same time, it effectively distinguishes between PVs and similar background using a novel semantic constraint module (SCM). We test PV Identifier on a distributed PV dataset in California. Experiments show that the inclusion of the FFL positively affects the model's sensitivity to small distributed PVs. Specifically, the PV Identifier with the FFL increases the Recall of identifying residential rooftop PVs by 1.9% compared to the model without the FFL. In addition, the integration of the SCM effectively improves the model's ability to locate residential rooftop PVs in complex environments, resulting in a 1.8% increase in the corresponding Precision. Compared to the four commonly used segmentation models, PV Identifier exhibits superior identification performance for residential rooftop PVs and commercial and industrial PVs, with an Intersection over Union (IoU) of 74.1% and 89.3%, respectively, which is at least 4.1% and 1.8% higher than other models. Overall, PV Identifier provides a viable solution to the problem of identifying small-scale distributed PV in complex backgrounds from HSRRS images.
Keywords: Distributed PV segmentation; PV identifier; Fine-grained feature layer; Semantic constraint module; High spatial resolution remote sensing images (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261924006949
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:365:y:2024:i:c:s0306261924006949
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2024.123311
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().