EconPapers    
Economics at your fingertips  
 

A two-stage low-carbon economic coordinated dispatching model for generation-load-storage resources considering flexible supply-demand balance

Yuanyuan Zhang, Huiru Zhao, Ze Qi and Bingkang Li

Applied Energy, 2024, vol. 373, issue C, No S0306261924013643

Abstract: With the changes in energy structure and system configuration, the uncertainty on both the supply and demand sides of the power system will significantly increase. The approach of increasing reserves to cope with the uncertainty is becoming unsustainable both technically and economically. It is necessary to accurately characterize system flexibility and propose flexibility-oriented dispatching optimization strategies. Based on this, this paper conducts research on the evaluation system for flexibility supply-demand balance and the coordinated optimization dispatch strategy of generation-load-storage resources. Firstly, a flexibility demand-supply balance evaluation system is proposed, which covers the quantification of flexibility demand, the quantification of flexibility supply capability, and the design of flexibility metrics. Secondly, a two-stage optimization dispatching model for generation-load-storage resources is constructed. In stage 1, the optimization obtains the operating power of generation, load and storage resources to meet the load demand, while in stage 2, the flexibility supply potential is considered to optimize the redispatch power of the flexibility resources to meet the flexibility demand. Finally, simulations are conducted in a typical industrial park with generation, load, and storage resources, and the results show: 1) The quantification of flexibility demand based on the polytope form is more accurate, ensuring that the obtained flexibility supply-demand balance evaluation results can effectively support system flexibility dispatching; 2) Compared with the traditional dispatching strategy that consider reserve capacity, the operational cost of the dispatching strategy considering flexibility supply-demand characteristics in this paper decreased by 3.31%, environmental costs decreased by 4.56%, and the penalty cost for flexibility deficiency decreased by 17.37%. The research results can leverage the synergistic effect of generation -load-storage resources, achieving a scientific balance between the economy, low-carbon, and adequacy of the generation-load-storage system, and provide a scientific approach for considering flexible supply-demand balance in the power system dispatching, supporting the stable and sustainable operation of the high-penetration new energy system.

Keywords: Flexibility; Flexibility demand; Flexibility supply-demand balance; Coordinated dispatching; Adequacy (search for similar items in EconPapers)
Date: 2024
References: Add references at CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261924013643
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:373:y:2024:i:c:s0306261924013643

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic

DOI: 10.1016/j.apenergy.2024.123981

Access Statistics for this article

Applied Energy is currently edited by J. Yan

More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu (repec@elsevier.com).

 
Page updated 2024-12-28
Handle: RePEc:eee:appene:v:373:y:2024:i:c:s0306261924013643