Uncovering the financial impact of energy-efficient building characteristics with eXplainable artificial intelligence
Koray Konhäuser and
Tim Werner
Applied Energy, 2024, vol. 374, issue C, No S0306261924013436
Abstract:
The urgency to combat climate change through decarbonization efforts is more crucial than ever. The global building sector is one of the primary contributors to carbon emissions, yet the economic implications of energetic building characteristics of residential buildings remain elusive. This study addresses the intersection of building energy performance, market valuation, and carbon emissions reduction by introducing a novel cluster-based eXplainable Artificial Intelligence (XAI) methodology to uncover the financial impact of energetic building features on property valuation. We combine Energy Performance Certificates (EPC) and property transaction data within the UK and apply two sophisticated machine learning models: XGBoost and CatBoost. To this end, we use hierarchical BIRCH clustering to identify subgroups within our comprehensive dataset and leverage SHapley Additive exPlanations (SHAP), Permutation Feature Importance (PFI), and Partial Dependency Plots (PDP) to reveal nuanced insights into the financial contribution of energetic building characteristics to property valuation. This research contributes to the academic discourse by introducing a cluster-based XAI approach for analyzing energy-related financial incentives in the building sector. Our results suggest that energy-efficient building features lead to significant financial benefits outside of London. The cluster-based approach reveals that carbon emissions are predominantly relevant for medium to large buildings outside of London but have a reversed financial effect within the capital. For larger residential buildings, we find a tendency for high running costs for energy (e.g., lighting costs) to be well reflected in transaction prices. The presented findings underscore the potential economic benefits for targeted energy efficiency improvements and illuminate the pathway towards a low-carbon society by addressing inherent uncertainties surrounding the economic viability of energetic investments, thus fostering informed decision-making and sustainable development.
Keywords: Building energy efficiency; Explainable artificial intelligence; Energy performance certificates; Energy efficient investments; Hierarchical Clustering (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261924013436
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:374:y:2024:i:c:s0306261924013436
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2024.123960
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().