Unified carbon emissions and market prices forecasts of the power grid
Roman Kohút,
Martin Klaučo and
Michal Kvasnica
Applied Energy, 2025, vol. 377, issue PC, No S030626192401910X
Abstract:
Carbon emissions and market prices forecasts of the power grid are of great importance for all electricity traders and consumers. Both forecasts enable flexible demand scheduling, ensuring sustainability and cost-efficiency. Many studies show the benefits of using both forecasts independently but not in combination, which remains an unexplored problem. The latest state-of-the-art techniques involve advanced statistical and machine learning algorithms leveraging seasonal patterns and exogenous forecasts. However, most of the reported studies deal only with problems of modeling and feature engineering, neglecting the forecast and model errors, which accumulate within the time-evolving power grid. This research aims to tackle these issues by introducing a versatile framework for short-term probabilistic forecasting of unified carbon emissions and market prices for electricity intra-day market participants. The approach utilizes the Hidden Markov Model for predictive estimation to determine the future energy mix of the country’s power grid. Furthermore, a novel optimization-based strategy, Moving Horizon Predictive Correction, is proposed to enhance the estimated energy mix performance, minimizing forecast and model errors. Subsequently, two separate recurrent neural networks are trained to provide probabilistic forecasts of carbon emissions and market prices, accounting for the stochastic dynamic of the power grid. A comparative analysis examines six case studies from various European countries and compares them with state-of-the-art forecasting methods. The results indicate that the proposed method can improve the qualitative measures by up to 53% for carbon emissions and up to 18% for market prices forecasts. Besides improving traditional point predictions, methods show significant increases in the quality of prediction intervals. Further application of the proposed forecasts is employed for a flexible 4-hour electricity consumption schedule. This showcases the usage of the proposed forecasts to find the best possible trade-off for low carbon emission, cost-effective electricity consumption time slots.
Keywords: Emission forecasting; Price forecasting; Energy mix; Forecast error minimization; Flexible consumption scheduling (search for similar items in EconPapers)
Date: 2025
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S030626192401910X
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:377:y:2025:i:pc:s030626192401910x
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2024.124527
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().