Analysis of a small wind-hydrogen stand-alone hybrid energy system
M.J. Khan and
M.T. Iqbal
Applied Energy, 2009, vol. 86, issue 11, 2429-2442
Abstract:
In this article, detailed modeling, simulation, and analysis of an isolated wind-hydrogen hybrid energy system is presented. Dynamic nonlinear models of all the major subsystems are developed based on sets of empirical and physical relationships. The performance of the integrated hybrid energy system is then analyzed through digital simulation. Design of dynamic controllers and supervisory control schemes are also presented. Expected behaviors during sudden load variation, wind speed change and hydrogen pressure drop are observed under both stochastic and step-variation conditions. MATLAB-SimulinkTM is employed for dynamic system modeling. This exercise, in essence, outlines a process of wind-hydrogen off-grid system control synthesis and performance evaluation. Finally, results of the analysis are summarized, limitations of the simulation study are identified, and scope for future work is indicated.
Keywords: Wind; energy; Hydrogen; storage; Control; Modeling; Simulation (search for similar items in EconPapers)
Date: 2009
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (31)
Downloads: (external link)
http://www.sciencedirect.com/science/article/B6V1T ... bb94d55028e76c32dfb4
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:86:y:2009:i:11:p:2429-2442
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().