Fatty acid methyl ester synthesis catalyzed by solid superacid catalyst /ZrO2-TiO2/La3+
Yan Li,
Xiao-Dong Zhang,
Li Sun,
Jie Zhang and
Hai-Peng Xu
Applied Energy, 2010, vol. 87, issue 1, 156-159
Abstract:
A new type of solid superacid catalyst with the composition of /ZrO2-TiO2 loaded with lanthanum was prepared by precipitation and impregnation. The catalytic performance for the synthesis of fatty acid methyl ester from fatty acid and methanol was investigated. The influences of preparation conditions on catalyst performance were studied, the optimum results of which showed that amount of La(NO3)3 was 0.1 wt.%, the concentration of H2SO4 for impregnation was 0.5 mol l-1 and calcination temperature was 550 °C. In addition, the effects of reaction parameters on esterification efficiency were also studied. With the catalyst amount of 5 wt.%, methanol amount of 1 ml/g fatty acid (FA) and reaction duration of 5 h at 60 °C, the conversion ratio could reach above 95%. The catalyst recycled without any treatments could exhibit high activity with the conversion efficiency of above 90% after being reused five times.
Keywords: Superacid; Fatty; acid; Esterification; FAME (search for similar items in EconPapers)
Date: 2010
References: View complete reference list from CitEc
Citations: View citations in EconPapers (9)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306-2619(09)00267-0
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:87:y:2010:i:1:p:156-159
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().