Modeling and control of a push-pull converter for photovoltaic microinverters operating in island mode
C.L. Trujillo,
D. Velasco,
E. Figueres,
G. Garcerá and
R. Ortega
Applied Energy, 2011, vol. 88, issue 8, 2824-2834
Abstract:
This paper presents the modeling and control of a push-pull converter integrated into a two-stage photovoltaic microinverter operating in island mode without backup energy storage components (batteries). A push-pull small signal model is presented, from which they are derived all transfer functions needed to implement the controllers that regulate the output current, input voltage and output voltage interacting with the MPPT algorithm. A significant contribution of the paper is the proposal of an innovative control structure that simultaneously regulates in island mode both the ac voltage and the dc voltage of the panels, in order to place it in the best operation point. Such operation point is calculated by a specific control loop that interacts with the MPPT algorithm. To validate the proposed concept, simulations in PSIM(TM) were carried out.
Keywords: Distributed; Generation; Microinverters; Photovoltaics; Panels; Push-pull (search for similar items in EconPapers)
Date: 2011
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (8)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306-2619(11)00071-7
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:88:y:2011:i:8:p:2824-2834
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().