Development of a novel refrigeration system for refrigerated trucks incorporating phase change material
Ming Liu,
Wasim Saman and
Frank Bruno
Applied Energy, 2012, vol. 92, issue C, 336-342
Abstract:
An innovative refrigeration system incorporating phase change material (PCM) is proposed to maintain refrigerated trucks at the desired thermal conditions. The advantage of using PCM to maintain low temperatures is that a conventional refrigeration system does not have to be located on-board the vehicle. In addition, the system consumes less energy and produces much lower local greenhouse gas (GHG) emissions. The phase change thermal storage unit (PCTSU) is charged by a refrigeration unit located off the vehicle when stationary. The PCM is discharged and provides cooling when in service. A new PCM with a lower cost than currently available PCMs was developed, suitable for maintaining the refrigerated truck at a temperature of −18°C. The PCM has a melting temperature of −26.7°C and a latent heat of 154.4kJkg−1. A prototype system was constructed and test results proved that the proposed refrigeration system is feasible for mobile transport. An analysis shows that delivery of refrigerated products can be made with a PCM system having a weight comparable to that of an on board conventional refrigeration system with less than half of the energy cost.
Keywords: Phase change material; Thermal energy storage; Refrigerated transport; Supercooling (search for similar items in EconPapers)
Date: 2012
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (34)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261911006660
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:92:y:2012:i:c:p:336-342
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2011.10.015
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().