Performance analysis of Isopropanol–Acetone–Hydrogen chemical heat pump
Jiangfeng Guo,
Xiulan Huai,
Xunfeng Li and
Mingtian Xu
Applied Energy, 2012, vol. 93, issue C, 267 pages
Abstract:
The performance of an Isopropanol–Acetone–Hydrogen (IAH) chemical heat pump system is investigated in terms of enthalpy efficiency (COP) and exergy efficiency, in which the exothermic and endothermic reactions take place in the gas phase. The increase of reflux ratio, temperature of endothermic reaction and temperature of exothermic reaction reduces the performance of the heat pump when the other operating parameters remain unchanged. However, the performance of the IAH chemical heat pump improves with the increase of the ratio of molar quantity of hydrogen to that of acetone in the entry of exothermic reactor and the number of heat transfer units of regenerator. Generally, a better performance of the chemical heat pump corresponds to a larger number of trays in the distillation column. The performance of the system can be improved significantly after multi-parameter optimization design. The coefficient of performance (COP) pays more attention to the heat released from the exothermic reactor, while the exergy efficiency takes into consideration of both heat released from the exothermic reactor and temperature of exothermic reaction.
Keywords: Isopropanol–Acetone–Hydrogen (IAH); Chemical heat pump; Exergy efficiency; Coefficient of performance (COP); Thermodynamics (search for similar items in EconPapers)
Date: 2012
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (10)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261911008762
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:93:y:2012:i:c:p:261-267
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2011.12.073
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().