Damköhler number as a descriptive parameter in methanol steam reforming and its integration with absorption heat pump system
Willy Yanto Wijaya,
Shunsuke Kawasaki,
Hirotatsu Watanabe and
Ken Okazaki
Applied Energy, 2012, vol. 94, issue C, 147 pages
Abstract:
Studies on the kinetics of methanol steam reforming (MSR) reaction have been extensively carried out in these past decades. However, in order to get a more thorough understanding of the MSR performance, it is necessary to integrate the reaction kinetics of MSR with the reactor design/operating parameters. This paper presents such works and employs Damköhler number (Da) to conveniently describe the trade-off between kinetics (reaction time scale) and operating parameters (residence time scale) of the MSR system. The correlation of Da and methanol conversion was also experimentally verified. Furthermore, feasibility criterion as a parameter to describe energy gain obtained by MSR reaction over the energy required by absorption heat pump (AHP) system was viewed, and its correlation with Da was investigated. Some results showed that even at various combinations of GHSV and MSR reaction temperature, the Da – methanol conversion empirically have a similar typical curve. On the other hand, for the combined AHP–MSR system, changing the value of Da, either by changing the GHSV or MSR reaction temperature, results in different profiles of feasibility criterion and hydrogen production rate.
Keywords: Damköhler number; Methanol steam reforming; Reaction kinetics; Absorption heat pump (search for similar items in EconPapers)
Date: 2012
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (5)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261912000475
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:94:y:2012:i:c:p:141-147
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2012.01.041
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().