The role of external heat exchangers in oxy-fuel circulating fluidized bed
Irene Bolea,
Luis M. Romeo and
David Pallarés
Applied Energy, 2012, vol. 94, issue C, 215-223
Abstract:
Recently, oxy-fuel combustion has received increasing attention as one of the short-term solutions for capturing CO2 from power plants. Despite their quick development, there are several issues that need further research. Combustion characteristics, heat transfer, emissions levels, optimum oxygen concentration and flue gas recycle are the main concern of the literature. All these issues may introduce several changes in power plant and boiler configuration that causes uncertainty in the final design of future installations. In this respect, oxy-fuel combustion in fluidized bed seems to present advantages in terms of flexibility, operational adaptability and simplicity of design modifications respect to air combustion. These issues have been though scarcely analysed in open literature.
Keywords: Oxy-fuel combustion; Circulating fluidized bed; Modelling; Heat transfer; External heat exchanger (search for similar items in EconPapers)
Date: 2012
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (14)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261912000566
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:94:y:2012:i:c:p:215-223
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2012.01.050
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().