EconPapers    
Economics at your fingertips  
 

Application of artificial neural network to predict thermal transmittance of wooden windows

Cinzia Buratti, Linda Barelli and Elisa Moretti

Applied Energy, 2012, vol. 98, issue C, 425-432

Abstract: Thermal performance of windows depends on many parameters, such as dimensional characteristics and material properties of the components. The thermal transmittance U can be evaluated by a numerical method based on the CFD approach for the evaluation of the frame U-value (ISO 10077-1, ISO 10077-2) or by experimental campaigns on window prototypes, according to ISO 12657-1; in both cases significant effort and time are required.

Keywords: Wooden windows; French windows; Thermal transmittance prediction; Artificial neural network; Experimental data (search for similar items in EconPapers)
Date: 2012
References: Add references at CitEc
Citations: View citations in EconPapers (10)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261912002905
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:98:y:2012:i:c:p:425-432

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic

DOI: 10.1016/j.apenergy.2012.04.004

Access Statistics for this article

Applied Energy is currently edited by J. Yan

More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu (repec@elsevier.com).

 
Page updated 2024-12-28
Handle: RePEc:eee:appene:v:98:y:2012:i:c:p:425-432