Approximate controllability of semilinear Hilfer fractional differential inclusions with impulsive control inclusion conditions in Banach spaces
Amar Debbouche and
Valery Antonov
Chaos, Solitons & Fractals, 2017, vol. 102, issue C, 140-148
Abstract:
This paper introduces a new concept called impulsive control inclusion condition, i.e., the impulsive condition is presented, in the first time, as inclusion related to multivalued maps and controls. The notion of approximate controllability of a class of semilinear Hilfer fractional differential control inclusions in Banach spaces is established. For the main results, we use fractional calculus, fixed point technique, semigroup theory and multivalued analysis. An appropriate set of sufficient conditions for the considered system to be approximately controllable is studied. Finally, we give an illustrated example to provide the obtained theory.
Keywords: Approximate controllability; Hilfer fractional differential inclusions; Multivalued maps; Semigroup theory; Fixed-point; Impulsive control inclusion conditions (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (8)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960077917300759
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:chsofr:v:102:y:2017:i:c:p:140-148
DOI: 10.1016/j.chaos.2017.03.023
Access Statistics for this article
Chaos, Solitons & Fractals is currently edited by Stefano Boccaletti and Stelios Bekiros
More articles in Chaos, Solitons & Fractals from Elsevier
Bibliographic data for series maintained by Thayer, Thomas R. ().