Long-range memory, distributional variation and randomness of bitcoin volatility
Salim Lahmiri,
Stelios Bekiros and
Antonio Salvi
Chaos, Solitons & Fractals, 2018, vol. 107, issue C, 43-48
Abstract:
We investigate the nonlinear patterns of volatility in seven Bitcoin markets. In particular, we explore the fractional long-range dependence in conjunction with the potential inherent stochasticity of volatility time series under four diverse distributional assumptions, i.e., Normal, Student-t, Generalized Error (GED), and t-Skewed distribution. Our empirical findings signify the existence of long-range memory in Bitcoin market volatility, irrespectively of distributional inference. The same applies to entropy measurement, which indicates a high degree of randomness in the estimated series. As Bitcoin markets are highly disordered and risky, they cannot be considered suitable for hedging purposes. Our results provide strong evidence against the efficient market hypothesis.
Keywords: Bitcoin; FIGARCH; Fractional memory; Entropy (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (65)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960077917305209
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:chsofr:v:107:y:2018:i:c:p:43-48
DOI: 10.1016/j.chaos.2017.12.018
Access Statistics for this article
Chaos, Solitons & Fractals is currently edited by Stefano Boccaletti and Stelios Bekiros
More articles in Chaos, Solitons & Fractals from Elsevier
Bibliographic data for series maintained by Thayer, Thomas R. ().