Symmetric periodic bursting behavior and bifurcation mechanism in a third-order memristive diode bridge-based oscillator
B.C. Bao,
P.Y. Wu,
H. Bao,
H.G. Wu,
X. Zhang and
M. Chen
Chaos, Solitons & Fractals, 2018, vol. 109, issue C, 146-153
Abstract:
This paper presents a novel third-order autonomous memristive diode bridge-based oscillator with fast-slow effect. Based on the modeling of the presented memristive oscillator, stability of the equilibrium point is analyzed by using the eigenvalues of the characteristic polynomial, and then symmetric periodic bursting behavior is revealed through bifurcation diagrams, phase plane plots, time sequences, and 0–1 test. Furthermore, bifurcation mechanism of the symmetric periodic bursting behavior is explored by constructing the fold and Hopf bifurcation sets of the fast-scale subsystem with the variations of the system parameter and slow-scale variable. Consequently, the presented memristive oscillator is always unstable and exhibits complex dynamical behavior of symmetric periodic bursting oscillations with a symmetric fold/Hopf cycle-cycle burster. In addition, experimental measurements are performed by hardware circuit to confirm the numerical simulations.
Keywords: Symmetric periodic bursting; Memristive oscillator; Bifurcation sets; Bifurcation mechanism (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (14)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960077918300912
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:chsofr:v:109:y:2018:i:c:p:146-153
DOI: 10.1016/j.chaos.2018.02.031
Access Statistics for this article
Chaos, Solitons & Fractals is currently edited by Stefano Boccaletti and Stelios Bekiros
More articles in Chaos, Solitons & Fractals from Elsevier
Bibliographic data for series maintained by Thayer, Thomas R. ().