EconPapers    
Economics at your fingertips  
 

Analysis and numerical simulation of multicomponent system with Atangana–Baleanu fractional derivative

Kolade M. Owolabi

Chaos, Solitons & Fractals, 2018, vol. 115, issue C, 127-134

Abstract: In this paper, we consider the mathematical analysis and numerical simulation of time-fractional multicomponent systems. Here, the classical time derivatives in such systems are replace with the Atangana–Baleanu fractional derivative in the sense of Caputo. This derivative is found useful in the sense that it combines both the non-local and nonsingular kernels in its formulation. A two-step family of Adams–Bashforth method is derived for the approximation of the Atangana–Baleanu derivative. Numerical experiments presented for different instances of α, 0 < α ≤ 1 correspond to our theoretical findings.

Keywords: Mittag–Leffler; Fractional derivative; Hopf-bifurcation; Oscillations; Predator-prey; Stability analysis (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (14)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960077918304351
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:chsofr:v:115:y:2018:i:c:p:127-134

DOI: 10.1016/j.chaos.2018.08.022

Access Statistics for this article

Chaos, Solitons & Fractals is currently edited by Stefano Boccaletti and Stelios Bekiros

More articles in Chaos, Solitons & Fractals from Elsevier
Bibliographic data for series maintained by Thayer, Thomas R. ().

 
Page updated 2025-03-19
Handle: RePEc:eee:chsofr:v:115:y:2018:i:c:p:127-134