A theoretical study on the performance of a solar collector using CeO2 and Al2O3 water based nanofluids with inclined plate: Atangana–Baleanu fractional model
Nadeem Ahmad Sheikh,
Farhad Ali,
Ilyas Khan and
Madeha Gohar
Chaos, Solitons & Fractals, 2018, vol. 115, issue C, 135-142
Abstract:
Nanofluids are developing fluids with improved thermal properties than the traditional fluids. The use of nanofluids achieves the maximum possible thermal performance with the smallest possible concentration by uniform dispersion and constant suspension of the nanoparticles in the base fluid. Nanofluid plays a decisive role in different thermal applications, such as the automotive industry, heat exchangers and solar power generation. The purpose of this article is to provide the mathematical formulation for the nanofluid and to simulate the use of nanoparticles to increase the heat transfer rate of solar equipment by obtaining the exact solutions for the problem under consideration. Furthermore, the fluid is considered to pass through a rigid inclined plane. The classical model of nanofluid is transformed into a fractional model using the newly developed Atangana–Baleanu time fractional derivative. The Laplace transform method is used to represent the flow profile and the heat transfer profile. Variations in the Nusselt number have been observed for different nanoparticles and their volume fractions. In addition, the influence of the volume fraction of nanoparticles on the fluid velocity has been studied in the illustrations. The obtained solutions are reduced to the corresponding solutions for the classical model of the nanofluid.
Keywords: Nanofluid; Solar collectors; Heat transfer enhancement; Atangana–Baleanu fractional derivatives (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (5)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960077918304508
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:chsofr:v:115:y:2018:i:c:p:135-142
DOI: 10.1016/j.chaos.2018.08.020
Access Statistics for this article
Chaos, Solitons & Fractals is currently edited by Stefano Boccaletti and Stelios Bekiros
More articles in Chaos, Solitons & Fractals from Elsevier
Bibliographic data for series maintained by Thayer, Thomas R. ().