Time fractional derivative model with Mittag-Leffler function kernel for describing anomalous diffusion: Analytical solution in bounded-domain and model comparison
Xiangnan Yu,
Yong Zhang,
HongGuang Sun and
Chunmiao Zheng
Chaos, Solitons & Fractals, 2018, vol. 115, issue C, 306-312
Abstract:
Non-Fickian or anomalous diffusion had been well documented in material transport through heterogeneous systems at all scales, whose dynamics can be quantified by the time fractional derivative equations (fDEs). While analytical or numerical solutions have been developed for the standard time fDE in bounded domains, the standard time fDE suffers from the singularity issue due to its power-law function kernel. This study aimed at deriving the analytical solutions for the time fDE models with a modified kernel in bounded domains. The Mittag-Leffler function was selected as the alternate kernel to improve the standard power-law function in defining the time fractional derivative, which was known to be able to overcome the singularity issue of the standard fractional derivative. Results showed that the method of variable separation can be applied to derive the analytical solution for various time fDEs with absorbing and/or reflecting boundary conditions. Finally, numerical examples with detailed comparison for fDEs with different kernels showed that the models and solutions obtained by this study can capture anomalous diffusion in bounded domains.
Keywords: Fractional diffusion equation; Mittag-Leffler function kernel; Bounded domain analytical solution; Method of variable separation; Laplace transform; Mean square displacement (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (7)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960077918305770
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:chsofr:v:115:y:2018:i:c:p:306-312
DOI: 10.1016/j.chaos.2018.08.026
Access Statistics for this article
Chaos, Solitons & Fractals is currently edited by Stefano Boccaletti and Stelios Bekiros
More articles in Chaos, Solitons & Fractals from Elsevier
Bibliographic data for series maintained by Thayer, Thomas R. ().