Modeling the dynamics of nutrient–phytoplankton–zooplankton system with variable-order fractional derivatives
Behzad Ghanbari and
J.F. Gómez-Aguilar
Chaos, Solitons & Fractals, 2018, vol. 116, issue C, 114-120
Abstract:
We extended the nutrient–phytoplankton–zooplankton model involving variable-order fractional differential operators of Liouville–Caputo, Caputo–Fabrizio and Atangana–Baleanu. Variable-order fractional operators permits model and describe accurately real world problems, for example, diffusion or spread of nutrients or species in different states. Particularly, we model the interaction of nutrient phytoplankton and its predator zooplankton. The variable-order fractional numerical scheme based on the fundamental theorem of fractional calculus and the Lagrange polynomial interpolation was consider. Numerical simulation results are provided for illustrating the effectiveness and applicability of the algorithm to solve variable-order fractional differential equations.
Keywords: Fractional calculus; Variable-order fractional derivatives; Nutrient–phytoplankton–zooplankton model; Lagrange interpolation (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (23)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960077918309512
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:chsofr:v:116:y:2018:i:c:p:114-120
DOI: 10.1016/j.chaos.2018.09.026
Access Statistics for this article
Chaos, Solitons & Fractals is currently edited by Stefano Boccaletti and Stelios Bekiros
More articles in Chaos, Solitons & Fractals from Elsevier
Bibliographic data for series maintained by Thayer, Thomas R. ().