Collocation methods for fractional differential equations involving non-singular kernel
D. Baleanu and
B. Shiri
Chaos, Solitons & Fractals, 2018, vol. 116, issue C, 136-145
Abstract:
A system of fractional differential equations involving non-singular Mittag-Leffler kernel is considered. This system is transformed to a type of weakly singular integral equations in which the weak singular kernel is involved with both the unknown and known functions. The regularity and existence of its solution is studied. The collocation methods on discontinuous piecewise polynomial space are considered. The convergence and superconvergence properties of the introduced methods are derived on graded meshes. Numerical results provided to show that our theoretical convergence bounds are often sharp and the introduced methods are efficient. Some comparisons and applications are discussed.
Keywords: System of fractional differential equations; Discontinuous piecewise polynomial spaces; Operational matrices; Mittag-Leffler function; Collocation methods; Diffusion equations (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (5)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960077918306295
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:chsofr:v:116:y:2018:i:c:p:136-145
DOI: 10.1016/j.chaos.2018.09.020
Access Statistics for this article
Chaos, Solitons & Fractals is currently edited by Stefano Boccaletti and Stelios Bekiros
More articles in Chaos, Solitons & Fractals from Elsevier
Bibliographic data for series maintained by Thayer, Thomas R. ().