EconPapers    
Economics at your fingertips  
 

Different type kernel h−fractional differences and their fractional h−sums

Thabet Abdeljawad

Chaos, Solitons & Fractals, 2018, vol. 116, issue C, 146-156

Abstract: The aim of this article is to recall and study fractional derivatives with singular kernels on hZ and define fractional derivatives with non-singular exponential and Mittag–Leffler kernels on hZ and study some of their properties. We shall follow the nabla time scale analysis and relate the h−nabla classical discrete fractional derivatives to the delta existing ones studied before by some authors. Some dual identities between left and right and delta and nabla, left and right h−fractional difference types will be investigated. The nabla h− discrete versions of the Mittag-Leffler functions will be recalled by means of the nabla h−fatorial functions and nabla h−Taylor polynomials. The discrete Laplace on hZ and its convolution theory are used often to proceed in our investigation. The obtained results will generalize the nabla classical discrete fractional differences and the nabla discrete fractional differences with discrete exponential and ML−kernels studied recently by Abdeljawad and Baleanu by setting h=1.

Keywords: h−discrete fractional derivative; h−discrete Mittag–Leffler function; h−discrete ABR and ABC fractional derivatives; h−discrete CFR and CFC fractional derivatives (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (6)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960077918308385
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:chsofr:v:116:y:2018:i:c:p:146-156

DOI: 10.1016/j.chaos.2018.09.022

Access Statistics for this article

Chaos, Solitons & Fractals is currently edited by Stefano Boccaletti and Stelios Bekiros

More articles in Chaos, Solitons & Fractals from Elsevier
Bibliographic data for series maintained by Thayer, Thomas R. ().

 
Page updated 2025-03-19
Handle: RePEc:eee:chsofr:v:116:y:2018:i:c:p:146-156