EconPapers    
Economics at your fingertips  
 

Analysis of SIR epidemic model with information spreading of awareness

K.M. Ariful Kabir, Kazuki Kuga and Jun Tanimoto

Chaos, Solitons & Fractals, 2019, vol. 119, issue C, 118-125

Abstract: The information spreading of awareness can prompt the manners of human to ease the infectious possibility and assist to recover swiftly. A dynamic system of Susceptible-Infected-Recovered (SIR) with Unaware-Aware (UA) process (SIR-UA) is newly developed by using compartment model through analytical approach with assumption of an infinite and well-mixed population. Moreover, individuals in a population can be classified into six states as unaware susceptible(SU), aware susceptible(SA), unaware infected(IU), aware infected(IA), unaware recovered(RU), and aware recovered(RA). Compared with previous models, the new dynamic set of equations described the more widespread situation and incorporated all possible states of Unaware-Aware (UA) with SIR process. The effect of awareness is explored carefully to show the significance on epidemic model with time steps. Consequently, the properties of parameters on the epidemic awareness model are studied to deliberate different physical situations. Finally, full phase diagrams are explored to show the epidemic sizes of susceptible and recovered individuals for various parameters.

Keywords: Social dilemma; Epidemic; SIR model; Information spreading (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (37)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960077918303898
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:chsofr:v:119:y:2019:i:c:p:118-125

DOI: 10.1016/j.chaos.2018.12.017

Access Statistics for this article

Chaos, Solitons & Fractals is currently edited by Stefano Boccaletti and Stelios Bekiros

More articles in Chaos, Solitons & Fractals from Elsevier
Bibliographic data for series maintained by Thayer, Thomas R. ().

 
Page updated 2025-03-19
Handle: RePEc:eee:chsofr:v:119:y:2019:i:c:p:118-125