Effect of information spreading to suppress the disease contagion on the epidemic vaccination game
K.M. Ariful Kabir,
Kazuki Kuga and
Jun Tanimoto
Chaos, Solitons & Fractals, 2019, vol. 119, issue C, 180-187
Abstract:
The information awareness about contagious diseases have an influential effect on an individual's decision to suppress the diffusion of infections. In this work, a new mathematical framework for a vaccination game combined with susceptible-infected-recovered (SIR) and unaware-aware (UA) situation is considered. Altering wearing mask or taking protection against diseases, we consider the information spreading effect that might be represented the situation of self-protection. The information spreading is supposed only for local situation for a season, but has a very significant effect to reduce the infection through a generation. Within this concept, unaware and aware states are taken for susceptible, infected and vaccinated individuals for an infinite and well mixed population. Moreover, three different strategy updating rules concerning whether an individual committing or not vaccination: individual based, strategy based and direct selection are studied to show the comparison by depicting as full phase diagram. Finally, it can be seen that information spreading can subdue the spreading of epidemic within a population.
Keywords: Social dilemma; Vaccination game; SIR model; Information spreading (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (28)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960077918303291
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:chsofr:v:119:y:2019:i:c:p:180-187
DOI: 10.1016/j.chaos.2018.12.023
Access Statistics for this article
Chaos, Solitons & Fractals is currently edited by Stefano Boccaletti and Stelios Bekiros
More articles in Chaos, Solitons & Fractals from Elsevier
Bibliographic data for series maintained by Thayer, Thomas R. ().